
GEMOC Demonstrator - building an
executable language for flight

controller specification

Table of Contents
1. Flight Controller Language - FCL . 3

1.1. Language Overview . 3

1.2. Repository Content Summary . 4

1.2.1. FCL Specifications . 4

1.2.2. Demonstration Controllers . 5

2. Scenario #1: Building an Executable Modeling Language . 6

2.1. FCL Metamodel Design . 6

2.1.1. FCL Ecore . 6

2.1.2. Basic Tree Editor . 11

2.2. Editors Design . 12

2.2.1. XText Editor . 13

2.2.2. Sirius Editor . 14

2.2.3. Sirius/Xtext Integration . 17

2.2.4. Static Validation . 17

2.3. Behavioral Semantic and Debugger Design . 18

2.4. FCL Animation. 18

2.5. Extra views. 19

2.6. Deployment . 19

2.6.1. Packaging and Deployment in an Eclipse Product . 19

2.6.2. Runtime Deployment . 20

3. Scenario #2: Simulating and Debugging a Behavioral Model . 21

3.1. Model Edition . 21

3.1.1. Textual Editor in Action . 21

3.1.2. Graphical Editor in Action . 24

3.1.3. Static Validation . 26

3.1.4. Basic Tree Editor in Action . 26

3.2. Debugger in Action. 27

3.3. Animation in Action. 28

4. Planning for V2 . 33

4.1. Enhancement of Existing Features. 33

4.2. New Features . 33

Please look at https://gitlab.inria.fr/glose/flight-controller-language-demonstrator
for all the sources (including both the FCL language and this document).

The latest online version of this document: as html, as pdf

The goals of this demonstrator is to provide general guidelines about how to use GEMOC
technologies in order to build the tooling for a language.

The provided tooling covers several concerns such as:

• Model edition (including textual and graphical edition)

• Model execution (including model debugging).

It is illustrated on a realistic language: a language for designing drone flight controllers.

As explained in https://download.eclipse.org/gemoc/docs/nightly/index.html , building the tooling
for a language highlights 2 mains roles: language engineers and modellers.

• Language engineers are the users that design executable DSLs using a metalanguage to define
their execution semantics. These users also develop domain- specific tools for their languages,
such as editors, validators, compilers… When possible they reuse and/or extend generic tools
provided by metalanguage engineers.

• Modelers are the users that design models conforming to executable DSLs. Depending on how
supported a given executable DSL and the metalanguage used to define its execution semantics
are, modelers will have access to a number of tools to aid them in their endeavor.

The GEMOC Studio used in this demonstrator offers dedicated workspaces and tooling for each of
these roles that are referenced as GEMOC Language workbench for the tools for language
engineers and GEMOC Modeling Workbench for the tools for _Modelers.

In this document, we may have to switch between these workbench in order to show the result of
the language workbench in the final modeling workbench:

• items or roles relative to the Language Workbench or involving the Language Engineer are
identified with the following icon :

• items or roles relative to the Modeling Workbench or involving the Modeler are identified with

the following icon :

This switch is required only during the development, once finished, one can build
a standalone eclipse product dedicated to the Modelers that contains only the final
dsl tooling.

For FCL, one can use the following update site to add FCL tooling to an existing
Eclipse and get a Modeling workbench.

• https://glose.gitlabpages.inria.fr/flight-controller-language-demonstrator/
updatesite/latest/

1

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator
https://glose.gitlabpages.inria.fr/flight-controller-language-demonstrator/documentation/gemoc-demonstrator.html
https://glose.gitlabpages.inria.fr/flight-controller-language-demonstrator/documentation/gemoc-demonstrator.pdf
https://download.eclipse.org/gemoc/docs/nightly/index.html
https://glose.gitlabpages.inria.fr/flight-controller-language-demonstrator/updatesite/latest/
https://glose.gitlabpages.inria.fr/flight-controller-language-demonstrator/updatesite/latest/

This document presents the actions in a sequential order corresponding roughly to
the first time each of these actions was started. However, the development is
actually iterative. Actions of the last steps may require changing or improving
element done in previous steps.

2

Chapter 1. Flight Controller Language - FCL

1.1. Language Overview
When building a flight controller, most people directly write the controller logic in the target
platform language. For example, they write in c when targeting ardiuno hardware.

Thanks to GEMOC we build a language dedicated to specify the logic for such code.

A end user of such language would then have a higher level of abstraction and better editing
support allowing her to be more efficient when writing complex logic.

The FCL is intended to specify relatively small actions (which might be complex in terms of control
command laws on the rotors and sensors) and basic plans. These actions will be organized in
modes., and how to switch from one mode to another, and which concrete actions are run. For
instance, typical basic modes that would be defined for a copter would be inspired by the ones
defined in ardupilot flight controller http://ardupilot.org/copter/docs/flight-modes.html.

Figure 1. Mini quadcopter controller mode diagram

3

http://ardupilot.org/copter/docs/flight-modes.html
images/fromsourceprojects/MiniQuadCopter01_FlightController Mode Diagram.jpg

Figure 2. Mini quadcopter controller function diagram

1.2. Repository Content Summary
The sources in git contains the following content:

1.2.1. FCL Specifications

The specifications of FCL are in fcl-implementations.

The folder fcl contains the projects building a language that is not executable yet, (ie. the common
part of various behavior implementation)

• fcl/fr.inria.glose.fcl.dsml project contains the GEMOC declaration of the fcl common part. It is
mainly used to drive the helper wizards;

• fcl/fr.inria.glose.fcl.model project contains the structural definition of the language (see Section
2.1);

• fcl/fr.inria.glose.fcl.design contains the graphical editor specification of the language (see
Section 2.2.2);

• fcl/fr.inria.glose.fcl.xtext contains textual editor specification of the language (see Section 2.2.1);

• fcl/fr.inria.glose.fcl.xtext.ide and fcl/fr.inria.glose.fcl.xtext.ui contain the code for integrating the
textual editor in Eclipse;

• fcl/fr.inria.glose.fcl.xtext.tests and fcl/fr.inria.glose.fcl.xtext.ui.tests projects contains a base for
unit tests.

4

images/fromsourceprojects/MiniQuadCopter01_FlightController Function Diagram.jpg
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.dsml
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.model
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.design
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext.ide
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext.ui
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext.tests
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext.tests

The folder commons contains the projects that are not specific to FCL

• commons/org.javafmi project contains the java driver allowing to load FMI/FMU;

The folder alefcl contains the projects defining an executable language for FCL writing using ALE.

• alefcl/fr.inria.glose.fcl.alefcl.xdmsl project contains: the GEMOC declaration of the executable
FCL: ALEFCL; the ALE extension that adds the behavioral semantics on top of the FCL base ().

• alefcl/fr.inria.glose.fcl.alefcl.xdmsl.design project contains the debug and animation extension
to fr.inria.glose.fcl.design dedicated to the ALEFCL language.

• alefcl/fr.inria.glose.fcl.alefcl.vm.mdodel project contains some additional extension written in
ecore defining some VirtualMachine concepts used by ALEFCL.

1.2.2. Demonstration Controllers

Some FCL model examples are located in: model_examples.

The demonstrator main example is located in fr.inria.glose.miniquadcoptercontroller.demo_v0. It
models a Quadcopter flight controller with two modes: a manual acrobatic mode and a manual
stabilized mode.

5

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/commons/org.javafmi
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdmsl
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdmsl.design
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.vm.model
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/model_examples
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/model_examples/fr.inria.glose.miniquadcoptercontroller.demo_v0

Chapter 2. Scenario #1: Building an
Executable Modeling Language
This scenario demonstrates the ability of the GEMOC Studio to help a language designer to build her
own modeling language, including the concepts (aka. abstract syntax), the textual and/or graphical
representation (aka. concrete syntax), and the meaning of those concepts over the time (aka.
behavioral semantics). The behavioral semantics is specified in the form of a virtual machine
allowing the execution of a conforming model.

As an outcome of such a scenario, the demonstrator shows how to automatically get a domain-
specific modeling and execution environment from the specification of the modeling language. The
use of resulting environment is demonstrated in Chapter 3

2.1. FCL Metamodel Design
During this phase the Language engineer captures the concepts the Modeler will be able use.

The main concerns of the Language engineer during this step will be to specify a class diagram
with a special focus on:

• the list of concepts

• their relationship. This includes the containment relationship which is used by many of the
generic tools in order to provide efficient default implementations.

2.1.1. FCL Ecore

⇒

Basically, FCL allows to model a DataFlow where the enabled Functions are filtered by a
StateMachine defining "Modes".

Figure 3 shows the relations between the major concepts:

• FCMModel, the root of the model;

• ModeStateMachine, the state machine controlling modes;

• Function, the functions of the dataflow;

• FunctionPort, the input and ouput port of functions;

• FunctionConnector, the connections between ports;

• Event, the event that can be used to trigger mode change;

• DataType, the primitive type of the data used in the model;

• Action, the action done when processing functions or when triggering mode changes;

• Expression, the expression used in actions and in the statemachine guards.

6

Figure 3. FCL main class diagram

Figure 4 shows the ModeStateMachine concepts. Basically, it models a statemachine controlling
enabled Functions. The ModeStateMachine is composed of Modes that enable a set of Function.
Changing mode is done by going through Transition where these Transition are guarded by an
Event and/or an Expression. Some Action can be defined when a Transition is fired or when entering
or leaving a Mode.

7

images/fromsourceprojects/FCL main class diagram.jpg

Figure 4. StateMachine class diagram

Figure 5 shows the Function concepts. Basically, it models a data flow between Functions. These
Functions declare DataPorts that can be connected through FunctionConnectors. Each Port may be
In, Out or InOut. A Function can declare sub functions.

FMUFunction and FMUFunctionBlockDataPort are specializations dedicated to handle the connect a
blackbox Function that can communicate using FMI/FMU protocol.

Basic Function declare an Action whose role is to specify the value to set on Out ports from In ports.

Functions can declare variables that are local to the function. It allows to use them (read/write)
from Expressions and Action (ie. Event, procedure body, …). They can be associated to a port but can
also have their own modification lifecycle (for example, a nested function modifying a value in its
parent function…).

8

images/fromsourceprojects/StateMachine class diagram.jpg

Figure 5. BlockFlow class diagram

Figure 6 shows the concepts supported to define the Expression in various places in the DSL.
Expression are typed, this allows several type verification either statically and at runtime (see also
Figure 8).

BinaryExpression defines a set of operators allowing to combine 2 expressions.

UnaryExpression defines some simple operation on a given expression.

CallConstant allows to define constant in the model (for each of the supported data type).

CallDeclarationReference allows to get the current value associated to one of the CallableDeclaration
elements of the language: a port of a Function (FunctionPort), a local variable declaration (VarDecl),
a variable in a function (FunctionVarDecl) or an enumration literal.

Similarly to CallDeclarationReference, CallPrevious allows to get the previous value associated to
one of the CallableDeclaration elements of the language.

9

images/fromsourceprojects/BlockFlow class diagram.jpg

Figure 6. Expression class diagram

Figure 7 shows the concepts supported to define the Action in various places in the DSL. It basically
uses Expression in order to provide the value to set in function ports and function variables.

Figure 7. Action class diagram

Figure 8 shows the primitive types that the Modeler can use when she define types in the model.
These types allow validation and early error reporting when associated with validation rules (see
Section 2.2.4).

10

images/fromsourceprojects/Expression class diagram.jpg
images/fromsourceprojects/Action class diagram.jpg

Figure 8. Types class diagram

2.1.2. Basic Tree Editor

⇒

Up to this point, the ecore provide a minimalistic model edition support using a tree representation.
Figure 9 shows this tree editor on the basic quadcopter controller.

11

images/fromsourceprojects/Types class diagram.jpg

Figure 9. DemoController model in tree editor screenshot

This tree editor is convenient during the early steps of the ecore definition as is allows to create
sample models and manually check the expressivity of the language.

2.2. Editors Design
The demonstrator illutrates the developement of two editors that collaborates:

• a textual editor allowing to fully write the model in a modern text editor with completion,
syntax highlighting, error/warning reporting.

• a graphical editor allowing to display and edit some part of the model. This editor doesn’t intend
to provide a graphical representation for all concepts but will open the textual editor when
required. (for example, the Expression or Action part of the model are displayed/edited using a
textual syntax only)

12

images/DemoController-in-TreeEditor-Screenshot.png

Even if this demonstrator focuses on more sophisticated editors (Textual and
graphical),

it is easy to customize the basic tree editor (see Section 2.1.2) to provide nicer
labels and icons.

Simply do a generate Model edit and generate Model editor on the genmodel file.
Then change the gif images and edit the getImage and getLabel methods in the
*ItemProvider java classes.

Do not forget to add a Generated NOT in the comment of the modified methods to
prevent overriding of your code if you regenerate the code due to an update in the
metamodel.

2.2.1. XText Editor

Starting an XText editor for FCL is done by doing:

• Right Click on the dsl project

• GEMOC Language → Create Xtext editor project for Language

◦ project name: fr.inria.glose.fcl.xtext

◦ Name: fr.inria.glose.fcl.xtext.FCL

 You can also do a File → new → project → xtext project from existing ecore models

This creates the project: fr.inria.glose.fcl.xtext

The file fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/FCL.xtext contains the grammar
allowing to parse *.fcl files.

The default grammar rules generated by the project creation wizard are functional but doesn’t suit
our needs. So they are customized to provide a friendlier textual syntax.

A Right click on the xtext file → Run As → Generate Xtext artifacts will update the java code for the
parser.

reference documentation https://www.eclipse.org/Xtext/documentation/
301_grammarlanguage.html

After modification (see fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/FCL.xtext), it now
supports operator precedence, and a syntax less verbose than the default one.

Xtext allows to define formatting rules. These rules readjusts the spaces, indentation and line
breaks when using Ctrl + Shift + F in the editor. The formatter code in conveniently written in the
form of rules in FCLFormatter.xtend

13

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/FCL.xtext
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/FCL.xtext
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/formatting2/FCLFormatter.xtend

While providing formatting rules is only a minor addition when using only xtext
editor, this becomes important to have it if the graphical views also allow to edit
the model. This ensures that the newly created elements will be properly displayed
in the textual editor.

⇒ Section 3.1.1 shows the resulting XText editor in action.

2.2.2. Sirius Editor

To initiate a first diagram for FCL:

• Right Click on the dsl project

• GEMOC Language → Create Sirius editor project for Language

◦ project name: fr.inria.glose.fcl.design

• Next → Next → check the box create a plugin using one of the following template → Select
FCLModel as root container → Finish

The Sirius diagram specification is in fr.inria.glose.fcl.design project.

The .design of the demonstrator defines 2 diagrams: * one diagram dedicated to show the
StateMachine of the Mode * one diagram dedicated to show the DataFlow between the Function

14

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.design

Figure 10. FCL Mode diagram specification screenshot

15

images/Sirius-Mode-design-Screenshot.png

Figure 11. FCL DataFlow diagram specification screenshot

 TODO add explanation

Several of the expressions in the odesign are simplified by using a java service. The services are
defined in fr.inria.glose.fcl.design/src/fr/inria/glose/fcl/design/Services.java.

Reference documentation for writing queries in Sirius: https://www.eclipse.org/
sirius/doc/specifier/general/Writing_Queries.html https://www.eclipse.org/acceleo/
documentation/aql.html https://www.eclipse.org/acceleo/documentation/

⇒ Section 3.1.2 shows the resulting Sirius editor in action.

Similarly to programming where several programs may produce the same
behavior, it exist several ways to write Sirius diagram specification that draw the
same diagram.

In this demonstrator some attempt have been done to provide correct reuse of the
rules and keep the global design simple. However, it can probably be improved. If
you see improvement that do not blur the teaching goal feel free to contact the
author and propose a change .

16

images/Sirius-DataFlow-design-Screenshot.png
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.design/src/fr/inria/glose/fcl/design/Services.java
https://www.eclipse.org/sirius/doc/specifier/general/Writing_Queries.html
https://www.eclipse.org/sirius/doc/specifier/general/Writing_Queries.html
https://www.eclipse.org/acceleo/documentation/aql.html
https://www.eclipse.org/acceleo/documentation/aql.html
https://www.eclipse.org/acceleo/documentation/

2.2.3. Sirius/Xtext Integration

 TODO write section

The java service fr.inria.glose.fcl.design/src/fr/inria/glose/fcl/design/Services.java defines several
methods that helps Sirius/XText collaboration. For example, the xtextPrettyPrint() (see Listing
xtextPrettyPrint java service) that allows to get the XText representation of an EObject (including its
contained element) is very handy to represent Expression in labels.

Listing xtextPrettyPrint java service

public String xtextPrettyPrint(EObject any) {
 if (any != null && any.eResource() instanceof XtextResource &&
any.eResource().getURI() != null) {
 String fileURI = any.eResource().getURI().toPlatformString(true);
 IFile workspaceFile = ResourcesPlugin.getWorkspace().getRoot().getFile(new
Path(fileURI));
 if (workspaceFile != null) {
 ICompositeNode node = NodeModelUtils.findActualNodeFor(any);
 if (node != null) {
 return node.getText().trim();
 }
 }
 }
 return "";
}

The method openBasicHoveringDialog(EObject any) is convenient to open a popup window for long
text that doesn’t fit in a label.

The method openTextEditor(EObject any) that allows to open the XText editor is useful to open the
selected element in the text editor. As the internal EMF resources are connected, saving changes
done in the text editor are automatically taken into account in the graphical editor.

XText/Sirius collaboration work correctly only if the user save doesn’t try to do
modification both in the textual editor and the graphical editor at the same time.
She must save the model before trying to edit using another editor.

2.2.4. Static Validation

The structure of the metamodel defined in Section 2.1 already provides some guidance to the
Modeler in order to build correct models. However, this structure cannot capture all non valid
situations. Many of them can be checked early by writing validators.

Several technique are possibles (OCL, Sirius validation rule, Xtext validation framework, EMF
validation framework).

In this demonstrator, as it relies on Xtext for the serialization, we’ve implemented a set of check
rules using Xtext framework which is very easy to set up. They are in the following file

17

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.design/src/fr/inria/glose/fcl/design/Services.java

fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/validation/FCLValidator.xtend.

They cover:

• type checking of Expression and Action

• checking of call/assignment of properties in complex data types

• checking of number of parameter when calling a Procedure

• checking of initial value on variables

• checking of loop connection (ie. InOut ports that have a connection to themselve which are
valid only if the connector is delayed, that it, its value is transmitted only when finishing the
parent function)

Many other useful check rule could be written, the Language engineer can write
rule detecting recurrent errors that many Modelers do.

In some case, the check might be only some advice reported as warning. For
example, in FCL, a rule report a warning when 2 different types are compatibles
but combined (or assigned) together. This helps the Modeler in focusing on
places with potential conversion errors.

2.3. Behavioral Semantic and Debugger Design
 TODO Write section explain ALE, explain FCL behavior

Figure 12. Mini quadcopter controller mode diagram

2.4. FCL Animation
The Sirius diagram animation specification is in fr.inria.glose.fcl.alefcl.xdsml.design project.

It extends the fr.inria.glose.fcl.design project (see Section 2.2.2) by adding new layers.

18

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/fcl/fr.inria.glose.fcl.xtext/src/fr/inria/glose/fcl/validation/FCLValidator.xtend
images/fromsourceprojects/MiniQuadCopter01_FlightController Mode Diagram.jpg
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdsml.design
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/fcl/fr.inria.glose.fcl.design

A first layer Debug has been added to support interaction with the GEMOC debugger. It role is to
provide:

• breakpoint representation and actions (toggle breakpoint),

• engine interaction, allowing to start an execution

• execution stack highlighting (ie. when clicking a step in the execution stack, it highlights the
step target model elements)

A second layer Animation has been added to support domain specific (FCL) animation directly on
top of the model diagrams.

As the graphical representation for FCL is composed of 2 diagrams (Mode and
DataFlow), the new layers Debug and Animation must be specified in each of
these diagrams.

2.5. Extra views
The demonstrator also provide a FCL specific view: FCL External Ports View.

This view is built as an eclipse UI view that registers to the execution as a GEMOC engine addon
dedicated only to FCL.

This view is designed to show only the outer FunctionPorts of the running model.

It also allows to modify the values of these FunctionPorts.

The java code of this view is in the fr.inria.glose.fcl.alefcl.xdsml project.

• ExternalPortsView.java contains the code for the UI

• ExternalPortsViewAddon.java is the addon that listen for GEMOC engine event and trigger an
update of the view.

• plugin.xml registers the view to Eclipse UI and registers the addon to the GEMOC Engine
specifically for FCL language.

2.6. Deployment
The modeling environment can be deployed using several way:

• for development purpose, a runtime workbench is started from the language workbench. It
allows to test and debug the language tooling.

• for use by the final end user (ie. the Modeler), the projects can be packaged and installed
directly in an Eclipse product.

2.6.1. Packaging and Deployment in an Eclipse Product

 TODO write section

19

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/tree/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdsml
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdsml/src/fr/inria/glose/fcl/alefcl/xdsml/views/ExternalPortsView.java
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdsml/src/fr/inria/glose/fcl/alefcl/xdsml/views/ExternalPortsViewAddon.java
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/blob/master/fcl-implementations/alefcl/fr.inria.glose.fcl.alefcl.xdsml/plugin.xml

2.6.2. Runtime Deployment

To get a runtime deployment for testing a language:

• Run → Run configurations… → Right click on Eclipse Application → new configutation

This creates a launch configuration that runs a new Eclipse similar to the current one but also that
also includes the plugins under development in the workspace.

20

Chapter 3. Scenario #2: Simulating and
Debugging a Behavioral Model
This scenario demonstrates the ability of the GEMOC Studio to provide a full-fledged modeling and
execution environment, that supports a language user (i.e., a domain expert, being a systems
engineer in the case of the chosen use case) in the design and early validation & verification of a
complex system. This scenario shows how to edit a model, and execute it such as the language user
can interact with it to inject external stimuli through the event manager and drive the execution
accordingly. In addition, the scenarios demonstrates the various facilities provided to help
manually debugging the model (wrt. to an expected behavior), such as breakpoint definition and
time traveling (forward and backward).

3.1. Model Edition
The Modeling workbench designed in Chapter 2 offers several model editors.

3.1.1. Textual Editor in Action

The smallest valid FCL model would be similar to Listing smallest FCL model. With a single mode
and a main function that does nothing.

Listing smallest FCL model

FlightControllerModel SmallestController { ①
 mainModeStateMachine {
 mode ManualAcrobaticFlight {} ②
 initialMode ManualAcrobaticFlight ③
 }
 mainFunction { ④
 }
}

① name of the model

② definition of a mode

③ definition of the initial mode

④ main function

A slighty more complex example would look like Listing Small FCL model with one master function.
It defines

21

Listing Small FCL model with one master function

FlightControllerModel SmallController {
 mainModeStateMachine {
 mode ManualAcrobaticFlight {}
 initialMode ManualAcrobaticFlight
 }
 mainFunction {
 ports {
 dataPort in i : integer defaultValue 0 ①
 dataPort out o : integer
 }
 action {
 o := (i * 10) ②
 }
 }
 dataTypes {
 IntegerValueType integer {} ③
 }
}

① the master function exposes an input port i and an output port o

② the action indicates how to compute o

③ the model defines an integer type

And a minimal system that defines several modes will look like Listing Minimal FCL model with
modes.

Listing Minimal FCL model with modes

FlightControllerModel minimalController {
 mainModeStateMachine {
 mode MultBy10 {
 enabledFunctions (X10) ①
 }
 mode MultBy100 {
 enabledFunctions (X10) ①
 }
 final mode Stop {} ②
 initialMode MultBy10

 transition MultBy10 -> MultBy100 { when buttonPressed } ③
 transition MultBy100 -> Stop { when buttonPressed }
 }
 mainFunction {
 ports {
 dataPort in i : integer defaultValue 0
 dataPort out o : integer
 }
 dataFlow { ④

22

 function X10 {
 ports {
 dataPort in ix10 : integer defaultValue 0
 dataPort out ox10 : integer
 }
 action {
 ox10 := (ix10 * 10) ⑤
 }
 }
 function X100 {
 ports {
 dataPort in ix100 : integer defaultValue 0
 dataPort out ox100 : integer
 }
 action {
 ox100 := (ix100 * 100) ⑤
 }
 }
 connect X10.ox10 <-> o ⑥
 connect X100.ox100 <-> o
 connect i <-> X10.ix10
 connect i <-> X100.ix100
 }
 }
 events {
 external buttonPressed ⑦
 }
 dataTypes {
 IntegerValueType integer {}
 }
}

① each mode indicates which sub function is active or not.

② some mode may be final to end the execution.

③ transitions between modes. (can be triggered via events and/or guard on data).

④ the main function declares 2 sub functions (in this case they are exclusive).

⑤ each sub function declare an action indicates how to compute its output.

⑥ mapping between ports (in this case between child functions to parent functions, but this can
also be between 2 children functions).

⑦ an event that can be raised (either internally from an action or from the system environment).

23

Figure 13. Xtext editor opened on the demo controller (mode statemachine part)

3.1.2. Graphical Editor in Action

Opening the Sirius representations of the minimal controller Listing Minimal FCL model with
modes provide the diagrams of Figure 14.

MinimalController-Sirius-editor-Screenshot.png

24

images/DemoController-in-XTeditor-statemachine-Screenshot.png

Figure 14. Small FCL model opened with the graphical editor.

 TODO write section

Figure 12 and Figure 16 show the graphical editor diagrams applied to the Quadcopter demo
controller.

Figure 15. Mini quadcopter controller mode diagram

25

images/MinimalController-Sirius-editor-Screenshot.png
images/fromsourceprojects/MiniQuadCopter01_FlightController Mode Diagram.jpg

Figure 16. Mini quadcopter controller function diagram

3.1.3. Static Validation

The validation rules added in [sec-fcl-static-validation] are reported in the Modeling workbench in
several ways:

• directly in the editors using colored icons; (hovering over the element shows a tooltip with an
explanatory text.)

• in a summary in the Problem view

 TODO show some error and warning in the various views

3.1.4. Basic Tree Editor in Action

As seen in Section 2.1.2, a simple tree editor is also available. since we haven’t generated the
dedicated java code for it, the Modeler can open a fcl file using a Right click on the .fcl file → Open
With → Other → Sample Reflective Ecore Model Editor

Figure 17 shows this tree editor on the basic quadcopter controller.

26

images/fromsourceprojects/MiniQuadCopter01_FlightController Function Diagram.jpg

Figure 17. DemoController model in tree editor screenshot

3.2. Debugger in Action
Figure 18 shows the toggle breakpoint action and some elements with the breakpoint icon that is
provided by the Debug layer.

27

images/DemoController-in-TreeEditor-Screenshot.png

Figure 18. Toggle breakpoint in action on the DataFlow diagram.

3.3. Animation in Action

28

images/DemoController-toggle-breakpoint-DataFlow-statemachine-Screenshot.png

Figure 19. Demo controller model running and paused after having changed mode.

Figure 20 shows the the demo controller model running and paused having evaluated all functions
one time. The FCL External Ports view displays the current value of the port located on the
MasterFunction (ie. the outer function)

29

images/DemoController-statemachine-run-Screenshot.png

Figure 20. Demo controller model running and paused after having evaluated all functions one time.

Figure 21 shows how a double click (or right click → popup menu → Change Value) in the FCL
External Ports view allows to changes its value.

30

images/DemoController-dataflow-1-big-step-run-Screenshot.png

Figure 21. Demo controller changing value using the ExternalPorts view.

Figure 22 shows the Demo controller paused after an update of the global clock. The
Multidimensional timeline shows the changes on the current value. The value is also visible in the
Variables view and the Sirius diagram.

31

images/DemoController-dataflow-1-big-step-change-value-Screenshot.png

Figure 22. Demo controller paused after an update of the global clock.

32

images/DemoController-after-clock-update-timeline-Screenshot.png

Chapter 4. Planning for V2
The version 1 of the demonstrator will be enhanced into a V2.

Most of them are listed in the gitlab: https://gitlab.inria.fr/glose/flight-controller-language-
demonstrator/issues

4.1. Enhancement of Existing Features

4.2. New Features
• Concurrent Engine

• Scenario #3: Exploring the Design Space of a Behavioral Model This scenario will demonstrate
the ability of the GEMOC Studio to explore the possible execution paths allowed by the model.
As an outcome of such a scenario, the demonstrator will show how to record external stimuli as
generic scenarios and reuse them as test cases.

33

https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/issues
https://gitlab.inria.fr/glose/flight-controller-language-demonstrator/issues

	GEMOC Demonstrator - building an executable language for flight controller specification
	Table of Contents
	Chapter 1. Flight Controller Language - FCL
	1.1. Language Overview
	1.2. Repository Content Summary
	1.2.1. FCL Specifications
	1.2.2. Demonstration Controllers

	Chapter 2. Scenario #1: Building an Executable Modeling Language
	2.1. FCL Metamodel Design
	2.1.1. FCL Ecore
	2.1.2. Basic Tree Editor

	2.2. Editors Design
	2.2.1. XText Editor
	2.2.2. Sirius Editor
	2.2.3. Sirius/Xtext Integration
	2.2.4. Static Validation

	2.3. Behavioral Semantic and Debugger Design
	2.4. FCL Animation
	2.5. Extra views
	2.6. Deployment
	2.6.1. Packaging and Deployment in an Eclipse Product
	2.6.2. Runtime Deployment

	Chapter 3. Scenario #2: Simulating and Debugging a Behavioral Model
	3.1. Model Edition
	3.1.1. Textual Editor in Action
	3.1.2. Graphical Editor in Action
	3.1.3. Static Validation
	3.1.4. Basic Tree Editor in Action

	3.2. Debugger in Action
	3.3. Animation in Action

	Chapter 4. Planning for V2
	4.1. Enhancement of Existing Features
	4.2. New Features

